If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+49x=0
a = 30; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·30·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*30}=\frac{-98}{60} =-1+19/30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*30}=\frac{0}{60} =0 $
| 2-5t=-6 | | 1x/3x=x | | -14+2x=24 | | 7x^2+9=261 | | 23d+6=82 | | 5b-3.50=13 | | 13p=78 | | 6p-5=16 | | l=8=13 | | 41=d−6 | | 71=q+15 | | p+66=90 | | i-8=13 | | V(x)=(16-2x)(11-2x) | | 2x+-6x=8 | | 78=m+15 | | 36=3u+24-5u | | 30⋅5x+3=150 | | F(x)=8,000*2^x | | 4(3x-6)=3(4x-3 | | 8x-(3x+)=23 | | -6w+4(w+8)=16 | | 5-y=15-4y | | B+b+b=b | | y=-4(-5)-13 | | -4x-2(-4x-13)=6 | | Y=3*5^x | | -75-p=-95 | | 4x+8=3+8 | | 9u-37=-5(u-1) | | 28=37-y | | 12-11w=45 |